Idling by DNA polymerase maintains a ligatable nick during lagging-strand DNA replication
نویسندگان
چکیده
منابع مشابه
How the cell deals with DNA nicks.
During lagging strand DNA replication, the Okazaki fragment maturation machinery is required to degrade the initiator RNA with high speed and efficiency, and to generate with great accuracy a proper DNA nick for closure by DNA ligase. Several operational parameters are important in generating and maintaining a ligatable nick. These are the strand opening capacity of the lagging strand DNA polym...
متن کاملProcessing of lagging-strand intermediates in vitro by herpes simplex virus type 1 DNA polymerase.
The processing of lagging-strand intermediates has not been demonstrated in vitro for herpes simplex virus type 1 (HSV-1). Human flap endonuclease-1 (Fen-1) was examined for its ability to produce ligatable products with model lagging-strand intermediates in the presence of the wild-type or exonuclease-deficient (exo(-)) HSV-1 DNA polymerase (pol). Primer/templates were composed of a minicircle...
متن کاملDNA polymerases that propagate the eukaryotic DNA replication fork.
Three DNA polymerases are thought to function at the eukaryotic DNA replication fork. Currently, a coherent model has been derived for the composition and activities of the lagging strand machinery. RNA-DNA primers are initiated by DNA polymerase ot-primase. Loading of the proliferating cell nuclear antigen, PCNA, dissociates DNA polymerase ca and recruits DNA polymerase S and the flap endonucl...
متن کاملMGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication
Recently, MGME1 was identified as a mitochondrial DNA nuclease with preference for single-stranded DNA (ssDNA) substrates. Loss-of-function mutations in patients lead to mitochondrial disease with DNA depletion, deletions, duplications and rearrangements. Here, we assess the biochemical role of MGME1 in the processing of flap intermediates during mitochondrial DNA replication using reconstitute...
متن کاملReplication of single-stranded plasmid pT181 DNA in vitro.
Plasmid pT181 is a 4437-base-pair, multicopy plasmid of Staphylococcus aureus that encodes tetracycline resistance. The replication of the leading strand of pT181 DNA initiates by covalent extension of a site-specific nick generated by the initiator protein at the origin of replication and proceeds by an asymmetric rolling circle mechanism. The origin of the leading strand synthesis also serves...
متن کامل